Research Inspirations

Journal Club

In our weekly team meetings, we host a journal club where each lab member is expected to present a research paper in turn. This forum encourages critical thinking and keeps our team updated on recent advancements in the field. Below is our current journal club rotation schedule, organized by date and topic.

DateCategoryTopicPaper
26-JanLLM post-trainingSFTInstruction Tuning for Large Language Models: A Survey
2-FebLLM post-trainingPEFT 1: LoRALoRA: Low-Rank Adaptation of Large Language Models
9-FebLLM post-trainingPEFT 2: QLoRAQLoRA: Efficient Finetuning of Quantized LLMs
16-FebLLM post-trainingRLHF 1: RL basicsDynamic Programming Principles
23-FebLLM post-trainingRLHF 2: DPODirect Preference Optimization: Your Language Model is Secretly a Reward Model
2-MarLLM post-trainingRLHF 3: PPOProximal Policy Optimization Algorithms
9-MarLLM post-trainingRLHF 4: GRPODeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
23-MarLLM applicationRAG 1: BasicsRetrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
30-MarLLM applicationRAG 2: AdvancementsRetrieval-Augmented Generation for Large Language Models: A Survey
6-AprLLM applicationRAG 3: GraphRAGFrom Local to Global: A Graph RAG Approach to Query-Focused Summarization
13-AprLLM applicationAgent 1: OverviewLarge Language Model Agent: A Survey on Methodology, Applications and Challenges
20-AprLLM applicationAgent 2: PlanningTree of Thoughts: Deliberate Problem Solving with Large Language Models
27-AprLLM applicationAgent 3: PlanningReAct: Synergizing Reasoning and Acting in Language Models
4-MayLLM applicationAgent 4: PlanningReflexion: Language Agents with Verbal Reinforcement Learning
11-MayLLM applicationAgent 5: MemoryGenerative Agents: Interactive Simulacra of Human Behavior
18-MayLLM applicationAgent 6: MemoryMemGPT: Towards LLMs as Operating Systems
1-JunLLM applicationAgent 7: ToolToolformer: Language Models Can Teach Themselves to Use Tools
8-JunLLM applicationAgent 8: ToolGorilla: Large Language Model Connected with Massive APIs
15-JunLLM applicationAgent 9: ToolHuggingGPT: Solving AI Tasks with ChatGPT and Its Friends
22-JunLLM applicationAgent 10: Multi-Agent SystemsGenerative Agents: Interactive Simulacra of Human Behavior
29-JunLLM applicationAgent 11: Multi-Agent SystemsCAMEL: Communicative Agents for “Mind” Exploration
6-JulLLM applicationAgent 12: Multi-Agent SystemsMetaGPT: Meta Programming for a Multi-Agent Collaborative Framework
13-JulLLM applicationAgent 13: Multi-Agent SystemsAutoGen: Enabling Next-Gen LLM Applications
20-JulLLM applicationAgent 14: Multi-Agent SystemsChatDev: Communicative Agents for Software Development
27-JulLLM applicationAgent 15: Multi-Agent SystemsAgentVerse: Facilitating Multi-Agent Collaboration and Exploring Emergent Behaviors

Paper Reading List

The reading list below is tailored for new lab members, featuring a selection of the latest papers from leading journals. These publications reflect a broad spectrum of topics that are loosely connected to our main research interests. All new members are encouraged to explore these articles to stay at the forefront of emerging trends and developments in our field:

Acute Kidney Injury:

  • Feng Y, Wang AY, Jun M, et al. Characterization of Risk Prediction Models for Acute Kidney Injury A Systematic Review and Meta-analysis. JAMA Network Open. 2023;6(5). doi:10.1001/jamanetworkopen.2023.13359
  • Haredasht FN, Vanhoutte L, Vens C, et al. Validated risk prediction models for outcomes of acute kidney injury: a systematic review. BMC Nephrology. 2023;24(1). doi:10.1186/s12882-023-03150-0
  • Hu J, Xu J, Li M, et al. Identification and validation of an explainable prediction model of acute kidney injury with prognostic implications in critically ill children: a prospective multicenter cohort study. eClinicalMedicine. 2024;68. doi:10.1016/j.eclinm.2023.102409
  • Rank N, Pfahringer B, Kempfert J, et al. Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. npj Digital Medicine. 2020;3(1). doi:10.1038/s41746-020-00346-8
  • Wu C, Zhang Y, Nie S, et al. Predicting in-hospital outcomes of patients with acute kidney injury. Nature Communications. 2023;14(1). doi:10.1038/s41467-023-39474-6

Dialysis:

  • Cooper BA, Branley P, Bulfone L, et al. A Randomized, Controlled Trial of Early versus Late Initiation of Dialysis. New England Journal of Medicine. 2010;363(7):609-619. doi:10.1056/nejmoa1000552
  • Hemmige V, Deshpande P, Norris KC, et al. Geographic Dialysis Facility Density and Early Dialysis Initiation. JAMA Network Open. 2024;7(1):E2350009. doi:10.1001/jamanetworkopen.2023.50009
  • McCoy IE, Weinhandl E, Hussein W, Hsu CY. Initial Management and Potential Opportunities to Deprescribe Dialysis among Patients with AKI-D Patients after Hospital Discharge. Journal of the American Society of Nephrology. 2023;34(12):1949-1951. doi:10.1681/ASN.0000000000000225
  • The STARRT‐AKI Investigators. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. New England Journal of Medicine. 2020;383(3):240-251. doi:10.1056/NEJMoa2000741

Transfer Learning:

  • Ebbehoj A, Thunbo MØ, Andersen OE, et al. Transfer learning for non-image data in clinical research: A scoping review. PLOS Digital Health. 2022;1(2):e0000014. doi:10.1371/journal.pdig.0000014
  • Gao Y, Cui Y. Deep transfer learning for reducing health care disparities arising from biomedical data inequality. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-18918-3
  • Qi T, Wu F, Wu C, et al. Differentially private knowledge transfer for federated learning. Nature Communications. 2023;14(1). doi:10.1038/s41467-023-38794-x
  • Radhakrishnan A, Ruiz Luyten M, Prasad N, et al. Transfer Learning with Kernel Methods. Nature Communications. 2023;14(1). doi:10.1038/s41467-023-41215-8
  • Zhao Z, Alzubaidi L, Zhang J, et al. A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert Systems with Applications. 2024;242. doi:10.1016/j.eswa.2023.122807

Federated Learning:

  • Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nature Medicine. 2021;27(10):1735-1743. doi:10.1038/s41591-021-01506-3
  • Kaissis G, Ziller A, Passerat-Palmbach J, et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence. 2021;3(6):473-484. doi:10.1038/s42256-021-00337-8
  • Zhang D, Tong J, Jing N, et al. Learning competing risks across multiple hospitals: one-shot distributed algorithms. Journal of the American Medical Informatics Association. 2024;31(5):1102-1112. doi:10.1093/jamia/ocae027
  • Zhang D, Tong J, Stein R, et al. One-shot distributed algorithms for addressing heterogeneity in competing risks data across clinical sites. Journal of Biomedical Informatics. 2024;150. doi:10.1016/j.jbi.2024.104595

Causal Learning:

  • Feuerriegel S, Frauen D, Melnychuk V, et al. Causal machine learning for predicting treatment outcomes. Nature Medicine. 2024;30(4):958-968. doi:10.1038/s41591-024-02902-1
  • Madumal P, Miller T, Sonenberg L, Vetere Victoria F. Explainable Reinforcement Learning through a Causal Lens. www.aaai.org
  • Prosperi M, Guo Y, Sperrin M, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nature Machine Intelligence. 2020;2(7):369-375. doi:10.1038/s42256-020-0197-y